Recent Extensions of the Discontinuous Enrichment Method for Variable-Coefficient Advection-Diffusion Problems in the High Péclet Regime

Irina Kalashnikova¹, R. Tezaur², C. Farhat^{1,2}

¹ Institute for Computational & Mathematical Engineering (iCME)

² Department of Aeronautics & Astronautics

Stanford University

16th International Conference on Finite Elements in Flow Problems (FEF 2011) Thursday, March 24, 2011

Scalar Advection-Diffusion Equation

$$\mathcal{L}c = \underbrace{-\kappa\Delta c}_{\text{diffusion}} + \underbrace{\mathbf{a} \cdot \nabla c}_{\text{advection}} = f$$

- 2D advection velocity vector:
 - $\mathbf{a} = (a_1, a_2)^T = |\mathbf{a}|(\cos \phi, \sin \phi)^T.$
- Φ = advection direction.
- \bullet $\kappa = \text{diffusivity}.$

- Describes many transport phenomena in fluid mechanics:
 - Heat transfer.
 - Semi-conductor device modeling.
 - Usual scalar model for the more challenging Navier-Stokes equations.
- Global **Péclet number** (L = length scale associated with Ω):

$$Pe = rac{ ext{rate of advection}}{ ext{rate of diffusion}} = rac{L|\mathbf{a}|}{\kappa} = Re \cdot \left\{ egin{array}{l} Pr & ext{(thermal diffusion)} \\ Sc & ext{(mass diffusion)} \end{array}
ight.$$

Advection-Dominated Regime

 Typical applications: flow is advection dominated.

Figure 1: Galerkin Q_1 solution (color) vs. exact solution (black) (Pe = 150)

Advection-Dominated
(High Pe) Regime
↓↓
Sharp gradients in exact solution
↓↓
Galerkin FEM inadequate:
spurious oscillations (Fig. 1)

- Some classical remedies:
 - Stabilized FEMs (SUPG, GLS, USFEM): add weighted residual (numerical diffusion) to variational equation.
 - RFB, VMS, PUM: construct conforming spaces that incorporate knowledge of local behavior of solution.

The Discontinuous Enrichment Method (DEM)

• First developed by Farhat et. al. in 2000 for the Helmholtz equation [1].

Idea of DEM:

"Enrich" the usual Galerkin polynomial field \mathcal{V}^P by the free-space solutions to the governing homogeneous PDE $\mathcal{L}c=0$.

$$c^h = c^P + c^E \in \mathcal{V}^P \oplus (\mathcal{V}^E \backslash \mathcal{V}^P)$$

where

$$\mathcal{V}^E = \operatorname{span}\{c : \mathcal{L}c = 0\}$$

Simple 1D Example:

$$\begin{cases} u_x - u_{xx} = 1 + x, & x \in (0, 1) \\ u(0) = 0, u(1) = 1 \end{cases}$$

- Enrichments: $u_x^E u_{xx}^E = 0 \Rightarrow u^E = C_1 + C_2 e^x \Rightarrow V^E = \text{span}\{1, e^x\}.$
- Galerkin FEM polynomials: $\mathcal{V}^P_{\Omega^e=(x_j,x_{j+1})} = \operatorname{span}\left\{\frac{x_{j+1}-x}{h},\frac{x-x_j}{h}\right\}$.

• Two variants of DEM: "pure DGM" vs. "true DEM"

Enrichment-Only "Pure DGM":

The standard continuous Galerkin polynomial field is dropped entirely from the approximation.

True or "Full" DEM:

Splitting of the approximation into coarse (polynomial) and fine (enrichment) scales.

 Unlike PUM, VMS & RFB: enrichment field in DEM is not required to vanish at element boundaries

Two Variants of DEM

• Two variants of DEM: "pure DGM" vs. "true DEM"

Enrichment-Only "Pure DGM":

The standard continuous Galerkin polynomial field is dropped entirely from the approximation.

True or "Full" DEM:

Splitting of the approximation into coarse (polynomial) and fine (enrichment) scales.

 Unlike PUM, VMS & RFB: enrichment field in DEM is not required to vanish at element boundaries ⇒ DEM is **discontinuous** by construction!

DEM = DGM with Lagrange Multipliers

What about Inter-Element Continuity?

• Continuity across element boundaries is enforced weakly using Lagrange multipliers $\lambda^h \in \mathcal{W}^h$:

$$\lambda^h \approx \nabla c_e^E \cdot \mathbf{n}^e = -\nabla c_{e'}^E \cdot \mathbf{n}^{e'}$$
 on $\Gamma^{e,e'}$ but making sure we uphold the...

• Discrete Babuška-Brezzi inf-sup condition¹:

$$\left\{ \begin{array}{ll} \text{\# Lagrange multiplier} \\ \text{constraint equations} \end{array} \right. \leq \left. \begin{array}{ll} \text{\# enrichment} \\ \text{equations} \end{array} \right\}$$

Rule of thumb to satisfy the Babuška-Brezzi inf-sup condition is to limit:

$$n^{\lambda} = \left\lfloor \frac{n^{\mathcal{E}}}{4} \right\rfloor \equiv \max \left\{ n \in \mathbb{Z} | n \leq \frac{n^{\mathcal{E}}}{4} \right\}$$

 $n^{\lambda} = \#$ Lagrange multipliers per edge $n^{E} = \#$ enrichment functions

¹Necessary condition for generating a non-singular global discrete problem.

Hybrid Variational Formulation of DEM

Strong form:

(S):
$$\begin{cases} \text{Find } c \in H^1(\Omega) \text{ such that} \\ -\kappa \Delta c + \mathbf{a} \cdot \nabla c = f, & \text{in } \Omega \\ c = g, & \text{on } \Gamma = \partial \Omega \end{cases}$$

Notation: $$\begin{split} & \widetilde{\widetilde{\Omega}} = \cup_{e=1}^{n_{el}} \Omega^{e} \\ & \widetilde{\Gamma} = \cup_{e=1}^{n_{el}} \Gamma^{e} \\ & \Gamma^{e,e'} = \Gamma^{e} \cap \Gamma^{e'} \\ & \Gamma^{int} = \cup_{e' < e} \cup_{e=1}^{n_{el}} \left\{ \Gamma^{e} \cap \Gamma^{e'} \right\} \end{split}$$

Strong form:

$$(S): \left\{ egin{array}{ll} \operatorname{Find} \ c \in H^1(\Omega) \ \operatorname{such that} \ -\kappa \Delta c + \mathbf{a} \cdot
abla c &= f, & \operatorname{in} \Omega \ c &= g, & \operatorname{on} \Gamma = \partial \Omega \ c_e - c_{e'} &= 0, & \operatorname{on} \Gamma^{\operatorname{int}} \end{array}
ight.$$

Notation:

$$\begin{split} & \overset{n_{el}}{\tilde{\Omega}} = \cup_{e=1}^{n_{el}} \Omega^e \\ & \overset{r}{\tilde{\Gamma}} = \cup_{e=1}^{n_{el}} \Gamma^e \\ & \Gamma^{e,e'} = \Gamma^e \cap \Gamma^{e'} \\ & \Gamma^{\text{int}} = \cup_{e' < e} \cup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\} \end{split}$$

Hybrid Variational Formulation of DEM

Strong form:

$$(S): \left\{ \begin{array}{ll} \mathsf{Find} \ c \in H^1(\Omega) \ \mathsf{such that} \\ -\kappa \Delta c + \mathbf{a} \cdot \nabla c &= f, \quad \mathsf{in} \ \Omega \\ c &= g, \quad \mathsf{on} \ \Gamma = \partial \Omega \\ c_e - c_{e'} &= 0, \quad \mathsf{on} \ \Gamma^\mathsf{int} \end{array} \right.$$

$$\text{Weak hybrid variational form:} \\ (W): \left\{ \begin{array}{ll} \text{Find } (c,\lambda) \in \mathcal{V} \times \mathcal{W} \text{ such that:} \\ a(v,c) &+ b(\lambda,v) &= r(v) \\ b(\mu,c) &= -r_d(\mu) \\ \text{holds } \forall c \in \mathcal{V}, \forall \mu \in \mathcal{W}. \\ \text{where} \\ a(v,c) = (\kappa \nabla v + v\mathbf{a}, \nabla c)_{\tilde{\Omega}} \end{array} \right. \quad \frac{\text{Notation:}}{\tilde{\Omega} = \bigcup_{e=1}^{n_{el}} \Omega^e} \tilde{\Gamma}^e \\ \tilde{\Gamma} = \bigcup_{e' < e}^{n_{el}} \Gamma^e \\ \tilde{\Gamma}^{\text{int}} = \bigcup_{e' < e} \bigcup_{e=1}^{n_{el}} \left\{ \Gamma^e \cap \Gamma^{e'} \right\}$$

$$a(v,c) = (\kappa \nabla v + v\mathbf{a}, \nabla c)_{\tilde{\Omega}}$$

$$b(\lambda, v) = \sum_{e} \sum_{e' < e} \int_{\Gamma^{e,e'}} \lambda (v_{e'} - v_e) d\Gamma + \int_{\Gamma} \lambda v \ d\Gamma$$

$$\begin{split} & \overset{\widetilde{\Omega}}{\widetilde{\Omega}} = \bigcup_{\substack{\theta=1 \\ \theta=1}}^{n_{\theta l}} \Omega^{\theta} \\ & \overset{\widetilde{\Gamma}}{\widetilde{\Gamma}} = \bigcup_{\substack{\theta=1 \\ \theta=1}}^{n_{\theta l}} \Gamma^{\theta} \\ & \Gamma^{e,e'} = \Gamma^{e} \cap \Gamma^{e'} \\ & \Gamma^{\text{int}} = \bigcup_{\substack{\theta' < e}} \bigcup_{\substack{\theta=1 \\ \theta=1}}^{n_{\theta l}} \left\{ \Gamma^{e} \cap \Gamma^{e'} \right\} \end{split}$$

• Element matrix problem (uncondensed):

$$\left(\begin{array}{ccc} \mathbf{k}^{\mathrm{PP}} & \mathbf{k}^{\mathrm{PE}} & \mathbf{k}^{\mathrm{PC}} \\ \mathbf{k}^{\mathrm{EP}} & \mathbf{k}^{\mathrm{EE}} & \mathbf{k}^{\mathrm{EC}} \\ \mathbf{k}^{\mathrm{CP}} & \mathbf{k}^{\mathrm{CE}} & \mathbf{0} \end{array} \right) \left(\begin{array}{c} \mathbf{c}^{\mathrm{P}} \\ \mathbf{c}^{\mathrm{E}} \\ \boldsymbol{\lambda}^{h} \end{array} \right) = \left(\begin{array}{c} \mathbf{r}^{\mathrm{P}} \\ \mathbf{r}^{\mathrm{E}} \\ \mathbf{r}^{\mathrm{C}} \end{array} \right)$$

• Element matrix problem (uncondensed):

$$\left(\begin{array}{ccc} \boldsymbol{k}^{PP} & \boldsymbol{k}^{PE} & \boldsymbol{k}^{PC} \\ \boldsymbol{k}^{EP} & \boldsymbol{k}^{EE} & \boldsymbol{k}^{EC} \\ \boldsymbol{k}^{CP} & \boldsymbol{k}^{CE} & \boldsymbol{0} \end{array}\right) \left(\begin{array}{c} \boldsymbol{c}^{P} \\ \boldsymbol{c}^{E} \\ \boldsymbol{\lambda}^{h} \end{array}\right) = \left(\begin{array}{c} \boldsymbol{r}^{P} \\ \boldsymbol{r}^{E} \\ \boldsymbol{r}^{C} \end{array}\right)$$

Due to the discontinuous nature of \mathcal{V}^E , \mathbf{c}^E can be eliminated at the element level by a static condensation

• Element matrix problem (uncondensed):

$$\left(\begin{array}{ccc} \boldsymbol{k}^{PP} & \boldsymbol{k}^{PE} & \boldsymbol{k}^{PC} \\ \boldsymbol{k}^{EP} & \boldsymbol{k}^{EE} & \boldsymbol{k}^{EC} \\ \boldsymbol{k}^{CP} & \boldsymbol{k}^{CE} & \boldsymbol{0} \end{array}\right) \left(\begin{array}{c} \boldsymbol{c}^{P} \\ \boldsymbol{c}^{E} \\ \boldsymbol{\lambda}^{h} \end{array}\right) = \left(\begin{array}{c} \boldsymbol{r}^{P} \\ \boldsymbol{r}^{E} \\ \boldsymbol{r}^{C} \end{array}\right)$$

Due to the discontinuous nature of V^E , \mathbf{c}^E can be eliminated at the element level by a static condensation

Statically-condensed True DEM Element:

$$\left(\begin{array}{cc} \tilde{\mathbf{K}}^{\mathrm{PP}} & \tilde{\mathbf{K}}^{\mathrm{PC}} \\ \tilde{\mathbf{K}}^{\mathrm{CP}} & \tilde{\mathbf{K}}^{\mathrm{CC}} \end{array}\right) \left(\begin{array}{c} \mathbf{c}^{\mathrm{P}} \\ \boldsymbol{\lambda}^{h} \end{array}\right) = \left(\begin{array}{c} \tilde{\mathbf{r}}^{\mathrm{P}} \\ \tilde{\mathbf{r}}^{\mathrm{C}} \end{array}\right)$$

Statically-condensed Pure DGM Element:

$$-\mathbf{k}^{\text{CE}}(\mathbf{k}^{\text{EE}})^{-1}\mathbf{k}^{\text{EC}}\boldsymbol{\lambda}^{h} = \mathbf{r}^{C} - \mathbf{k}^{\text{CE}}(\mathbf{k}^{\text{EE}})^{-1}\mathbf{r}^{\text{E}}$$

• Element matrix problem (uncondensed):

$$\left(\begin{array}{ccc} \boldsymbol{k}^{PP} & \boldsymbol{k}^{PE} & \boldsymbol{k}^{PC} \\ \boldsymbol{k}^{EP} & \boldsymbol{k}^{EE} & \boldsymbol{k}^{EC} \\ \boldsymbol{k}^{CP} & \boldsymbol{k}^{CE} & \boldsymbol{0} \end{array}\right) \left(\begin{array}{c} \boldsymbol{c}^{P} \\ \boldsymbol{c}^{E} \\ \boldsymbol{\lambda}^{\hbar} \end{array}\right) = \left(\begin{array}{c} \boldsymbol{r}^{P} \\ \boldsymbol{r}^{E} \\ \boldsymbol{r}^{C} \end{array}\right)$$

 $\begin{array}{c} \text{Computational} \\ \text{complexity} \\ \text{depends on } \dim \mathcal{W}^h \\ \text{not on } \dim \mathcal{V}^E \end{array}$

Due to the discontinuous nature of \mathcal{V}^E , \mathbf{c}^E can be eliminated at the element level by a static condensation

Statically-condensed True DEM Element:

$$\left(\begin{array}{cc} \tilde{\mathbf{k}}^{\mathrm{PP}} & \tilde{\mathbf{k}}^{\mathrm{PC}} \\ \tilde{\mathbf{k}}^{\mathrm{CP}} & \tilde{\mathbf{k}}^{\mathrm{CC}} \end{array}\right) \left(\begin{array}{c} \mathbf{c}^{\mathrm{P}} \\ \boldsymbol{\lambda}^{h} \end{array}\right) = \left(\begin{array}{c} \tilde{\mathbf{r}}^{\mathrm{P}} \\ \tilde{\mathbf{r}}^{\mathrm{C}} \end{array}\right)$$

Statically-condensed Pure DGM Element:

$$-\mathbf{k}^{\text{CE}}(\mathbf{k}^{\text{EE}})^{-1}\mathbf{k}^{\text{EC}}\boldsymbol{\lambda}^{h} = \mathbf{r}^{C} - \mathbf{k}^{\text{CE}}(\mathbf{k}^{\text{EE}})^{-1}\mathbf{r}^{\text{E}}$$

Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DE Constant-Coefficient Advection-Diffusion Extension to Variable-Coefficient Ad

Polynomial Enrichment Functions for 2D Advection-Diffusion

• Polynomial free-space solutions to $\mathbf{a} \cdot \nabla c_n^E - \Delta c_n^E = 0$ (of any desired degree n) can be derived².

²The advantage of these polynomials over standard FEM polynomials is discussed in: S. Brogniez, C. Farhat, "Theoretical Analysis of the DEM for the Advection-Diffusion Equation at High *Pe* Number," *FEF 2011* (W2G, Wed. March 23, 14:10-14:30).

Polynomial Enrichment Functions for 2D Advection-Diffusion

• Polynomial free-space solutions to $\mathbf{a} \cdot \nabla c_n^E - \Delta c_n^E = 0$ (of any desired degree n) can be derived².

$$c_1^E(\mathbf{x}) = |\mathbf{a} \times \mathbf{x}|$$

²The advantage of these polynomials over standard FEM polynomials is discussed in: S. Brogniez, C. Farhat, "Theoretical Analysis of the DEM for the Advection-Diffusion Equation at High *Pe* Number," *FEF 2011* (W2G, Wed. March 23, 14:10-14:30).

Polynomial Enrichment Functions for 2D Advection-Diffusion

• Polynomial free-space solutions to $\mathbf{a} \cdot \nabla c_n^E - \Delta c_n^E = 0$ (of any desired degree n) can be derived².

$$c_1^{\mathcal{E}}(\mathbf{x}) = |\mathbf{a} \times \mathbf{x}|$$
$$c_2^{\mathcal{E}}(\mathbf{x}) = |\mathbf{a} \times \mathbf{x}|^2 + 2(\mathbf{a} \cdot \mathbf{x})$$

²The advantage of these polynomials over standard FEM polynomials is discussed in: S. Brogniez, C. Farhat, "Theoretical Analysis of the DEM for the Advection-Diffusion Equation at High *Pe* Number," *FEF 2011* (W2G, Wed. March 23, 14:10-14:30).

Polynomial Enrichment Functions for 2D Advection-Diffusion

• Polynomial free-space solutions to $\mathbf{a} \cdot \nabla c_n^E - \Delta c_n^E = 0$ (of any desired degree n) can be derived².

$$\begin{aligned} c_1^E(\mathbf{x}) &= |\mathbf{a} \times \mathbf{x}| \\ c_2^E(\mathbf{x}) &= |\mathbf{a} \times \mathbf{x}|^2 + 2(\mathbf{a} \cdot \mathbf{x}) \\ c_3^E(\mathbf{x}) &= |\mathbf{a} \times \mathbf{x}|^3 + 6|\mathbf{a} \times \mathbf{x}|(\mathbf{a} \cdot \mathbf{x}) \end{aligned}$$

Slowly-varying (coarse) scale shape functions

²The advantage of these polynomials over standard FEM polynomials is discussed in: S. Brogniez, C. Farhat, "Theoretical Analysis of the DEM for the Advection-Diffusion Equation at High *Pe* Number," *FEF 2011* (W2G, Wed. March 23, 14∌10-14:30). № №

Angle-Parametrized Exponential Enrichment Functions for 2D Advection-Diffusion

• Exponential free-space solutions to $\mathbf{a} \cdot \nabla c^E - \kappa \Delta c^E = 0$ can be derived as well.

$$c^{E}(\mathbf{x}; \theta_{i}) = e^{\left(\frac{a_{1} + |\mathbf{a}|\cos\theta_{i}}{2\kappa}\right)(\mathbf{x} - \mathbf{x}_{r,i})} e^{\left(\frac{a_{2} + |\mathbf{a}|\sin\theta_{i}}{2\kappa}\right)(\mathbf{y} - \mathbf{y}_{r,i})}$$

$$\Theta^{c} = \{\theta_{i}\}_{i=1}^{n^{E}} \in [0, 2\pi) = \text{ set of angles specifying } \mathcal{V}^{E}$$
(1)

Figure 2: Plots of enrichment functions $c^E(\mathbf{x}; \theta_i)$ for several values of θ_i (Pe = 20)

Lagrange Multiplier Approximations

$$\begin{array}{c}
\Omega^{e} \\ s \\
s \\
\Gamma^{e,e'} \\
\mathbf{n}^{e,e'}
\end{array}$$

$$\Omega^{e'} \\
s = 0$$

Figure 3: Straight edge $\Gamma^{e,e'}$ oriented at angle $\alpha^{e,e'} \in [0,2\pi)$

$$\lambda^h pprox
abla c_e^E \cdot \mathbf{n}^e = -
abla c_{e'}^E \cdot \mathbf{n}^{e'}$$

• LM approximations arising from exponential enrichments:

$$\begin{split} \lambda^h|_{\Gamma^{e,e'}} &= \operatorname{span} \left\{ e^{\Lambda_i^{e,e'}(s-s_{r,i}^{e,e'})}, \ 0 \leq s \leq h, 1 \leq i \leq n^{\operatorname{exp}} \right\} \end{split}$$
 where $\Lambda_i^{e,e'} \equiv \frac{|\mathbf{a}|}{2\kappa} \left[\cos(\phi - \alpha^{e,e'}) + \cos(\theta_i - \alpha^{e,e'}) \right].$

• LM approximations arising from polynomial enrichments:

$$\lambda^h|_{\Gamma^{\theta,\theta'}} = \operatorname{span}\left\{s^k,\ 0 \leq s \leq h, 0 \leq k \leq n^{\operatorname{pol}} - 1\right\}$$

Representative Numerical Results for Constant-Coefficient Homogeneous Problem

Galerkin

Representative Numerical Results for Constant-Coefficient Homogeneous Problem

Galerkin

Impressive results for constant-coefficient problems!

Extension to Variable-Coefficient Problems

- Define $\mathcal{V}^{\mathcal{E}}$ within each element as the free-space solutions to the homogeneous PDE, with locally-frozen coefficients.
- $\mathbf{a}(\mathbf{x}) \approx \mathbf{a}^e$ =constant inside each element Ω^e as $h \to 0$:

$$\{\mathbf{a}(\mathbf{x})\cdot\nabla c - \kappa\Delta c = f(\mathbf{x}) \text{ in } \Omega\} \approx \cup_{e=1}^{n_{el}} \{\mathbf{a}^e\cdot\nabla c - \kappa\Delta c = f(\mathbf{x}) \text{ in } \Omega^e\}.$$

$$\mathbf{a}^{e} \equiv \begin{pmatrix} -y_{j} - \frac{h}{2} \\ x_{j} + \frac{h}{2} \end{pmatrix} \qquad \mathbf{a}^{e'} \equiv \begin{pmatrix} -y_{j} - \frac{h}{2} \\ x_{j} + \frac{3h}{2} \end{pmatrix} \qquad \mathbf{a}(\mathbf{x})^{\frac{1}{2}} = \begin{pmatrix} -y, & x \end{pmatrix}^{T}$$

$$y_{j} \qquad \qquad y_{j} \qquad \qquad x_{j} + h \qquad \qquad x_{j} + 2h$$

Enrichment in each element:

$$c_{e}^{\textit{E}}(\textbf{x};\boldsymbol{\theta}_{i}^{\textit{e}}) = e^{\frac{|\textbf{a}^{\textit{e}}|}{2\kappa}(\cos{\phi^{\textit{e}}} + \cos{\theta_{i}^{\textit{e}}})(x - x_{r,i}^{\textit{e}})} e^{\frac{|\textbf{a}^{\textit{e}}|}{2\kappa}(\sin{\phi^{\textit{e}}} + \sin{\theta_{i}^{\textit{e}}})(y - y_{r,i}^{\textit{e}})} \in \mathcal{V}_{e}^{\textit{E}}$$

Relation Between Local Enrichment and Governing PDE

• Given $\mathbf{a}(\mathbf{x}) \in C^1(\Omega^e)$, Taylor expand $\mathbf{a}(\mathbf{x})$ around an element's midpoint $\bar{\mathbf{x}}^e$:

$$\mathbf{a}(\mathbf{x}) = \mathbf{a}(\bar{\mathbf{x}}^e) + \nabla \mathbf{a}|_{\mathbf{x} = \bar{\mathbf{x}}^e} \cdot (\mathbf{x} - \bar{\mathbf{x}}^e) + \mathcal{O}(\mathbf{x} - \bar{\mathbf{x}}^e)^2 \quad \text{in } \Omega^e$$

Relation Between Local Enrichment and Governing PDE

• Given $\mathbf{a}(\mathbf{x}) \in C^1(\Omega^e)$, Taylor expand $\mathbf{a}(\mathbf{x})$ around an element's midpoint **x**e:

$$\mathbf{a}(\mathbf{x}) = \mathbf{a}(\bar{\mathbf{x}}^e) + \nabla \mathbf{a}|_{\mathbf{x} = \bar{\mathbf{x}}^e} \cdot (\mathbf{x} - \bar{\mathbf{x}}^e) + \mathcal{O}(\mathbf{x} - \bar{\mathbf{x}}^e)^2 \quad \text{ in } \Omega^e$$
• Operator governing the PDE inside the element Ω^e takes the form

$$ightarrow$$
 $\mathbf{a}(\mathbf{x}) \cdot \nabla c - \kappa \Delta c = \mathcal{L}_e c + f(c)$ in Ω^e

where

$$\mathcal{L}_{e}c \equiv \mathbf{a}(\bar{\mathbf{x}}^{e}) \cdot \nabla c - \kappa \Delta c$$

$$f(c) \equiv \left[\nabla \mathbf{a}|_{\mathbf{x} = \bar{\mathbf{x}}^{e}} \cdot (\mathbf{x} - \bar{\mathbf{x}}^{e}) + \mathcal{O}(\mathbf{x} - \bar{\mathbf{x}}^{e})^{2} \right] \cdot \nabla c$$

Relation Between Local Enrichment and Governing PDE

• Given $\mathbf{a}(\mathbf{x}) \in C^1(\Omega^e)$, Taylor expand $\mathbf{a}(\mathbf{x})$ around an element's midpoint $\bar{\mathbf{x}}^e$:

$$\mathbf{a}(\mathbf{x}) = \mathbf{a}(\bar{\mathbf{x}}^e) + \nabla \mathbf{a}|_{\mathbf{x} = \bar{\mathbf{x}}^e} \cdot (\mathbf{x} - \bar{\mathbf{x}}^e) + \mathcal{O}(\mathbf{x} - \bar{\mathbf{x}}^e)^2$$
 in Ω^e

• Operator governing the PDE inside the element Ω^e takes the form

$$\mathbf{a}(\mathbf{x}) \cdot \nabla \mathbf{c} - \kappa \Delta \mathbf{c} = \mathcal{L}_{\mathbf{e}} \mathbf{c} + f(\mathbf{c}) \quad \text{in } \Omega^{\mathbf{e}}$$

where

$$\mathcal{L}_e c \equiv \mathbf{a}(\bar{\mathbf{x}}^e) \cdot \nabla c - \kappa \Delta c$$

$$f(c) \equiv \left[\nabla \mathbf{a}|_{\mathbf{x} = \bar{\mathbf{x}}^e} \cdot (\mathbf{x} - \bar{\mathbf{x}}^e) + \mathcal{O}(\mathbf{x} - \bar{\mathbf{x}}^e)^2 \right] \cdot \nabla c$$

Can we improve the enrichment space for variable-coefficient problems?

"Higher Order" Enrichment Function for Variable-Coefficient Advection-Diffusion

• Linearize a(x) to second order, instead of to first order:

$$\mathbf{a}(\mathbf{x}) pprox \mathbf{a}(\bar{\mathbf{x}}^e) + \nabla \mathbf{a}|_{\mathbf{x} = \bar{\mathbf{x}}^e} \cdot (\mathbf{x} - \bar{\mathbf{x}}^e) \quad \text{ in } \Omega^e$$

Enrich with free-space solutions to

$$[\mathbf{A}\mathbf{x} + \mathbf{b}] \cdot \nabla c^{\mathcal{E}} - \kappa \Delta c^{\mathcal{E}} = 0 \tag{2}$$
 where $\mathbf{A} \equiv \nabla \mathbf{a}|_{\mathbf{x} = \bar{\mathbf{x}}^e}, \mathbf{b} \equiv (\mathbf{a}(\bar{\mathbf{x}}^e) - \nabla \mathbf{a}|_{\mathbf{x} = \bar{\mathbf{x}}^e} \bar{\mathbf{x}}^e).$

Solutions to (2) are given by:

$$c^{E}(\mathbf{x}) = \int_{0}^{\mathbf{v}_{i} \cdot \mathbf{x}} \exp \left\{ \frac{\sigma_{i} w^{2}}{2} + (\mathbf{v}_{i} \cdot \mathbf{b}) w \right\} dw$$

$$\sigma_i = \text{eigenvalue of } \nabla \mathbf{a}|_{\mathbf{x} = \mathbf{\bar{x}}^e}$$

 $\mathbf{v}_i = \text{eigenvector of } \nabla \mathbf{a}|_{\mathbf{x} = \mathbf{\bar{x}}^e}$

"Enrichment Function Bank"

Polynomial Family $c_{e,0}^{E}(\mathbf{x}) = 1$ $c_{e,1}^{E}(\mathbf{x}) = |\mathbf{a}^{e} \times \mathbf{x}|$

$$c_{e,3}^{E}(\mathbf{x}) = |\mathbf{a}^{e} \times \mathbf{x}|^{2} + 2(\mathbf{a}^{e} \cdot \mathbf{x})$$

$$c_{e,3}^{E}(\mathbf{x}) = |\mathbf{a}^{e} \times \mathbf{x}|^{3} + 6|\mathbf{a}^{e} \times \mathbf{x}|(\mathbf{a}^{e} \cdot \mathbf{x})$$

:

"Enrichment Function Bank"

Polynomial Family $c_{e,0}^{E}(\mathbf{x}) = 1$ $c_{e,1}^{E}(\mathbf{x}) = |\mathbf{a}^{e} \times \mathbf{x}|$

$$c_{e,0}^{E}(\mathbf{x}) = 1$$

$$c_{e,1}^{E}(\mathbf{x}) = |\mathbf{a}^{e} \times \mathbf{x}|$$

$$c_{e,2}^{E}(\mathbf{x}) = |\mathbf{a}^{e} \times \mathbf{x}|^{2} + 2(\mathbf{a}^{e} \cdot \mathbf{x})$$

$$c_{e,3}^{E}(\mathbf{x}) = |\mathbf{a}^{e} \times \mathbf{x}|^{3} + 6|\mathbf{a}^{e} \times \mathbf{x}|(\mathbf{a}^{e} \cdot \mathbf{x})$$

$$\vdots$$

٠

Exponential Family

$$c_{\theta}^{E}(\mathbf{x};\theta_{i}) = e^{\left(\frac{a_{1}^{\theta} + |\mathbf{a}^{\theta}| \cos \theta_{i}}{2\kappa}\right)(x - x_{r,i})} e^{\left(\frac{a_{2}^{\theta} + |\mathbf{a}^{\theta}| \sin \theta_{i}}{2\kappa}\right)(y - y_{r,i})}$$

"Enrichment Function Bank"

Polynomial Family

$$\begin{aligned} c_{e,0}^E(\mathbf{x}) &= 1 \\ c_{e,1}^E(\mathbf{x}) &= |\mathbf{a}^e \times \mathbf{x}| \\ c_{e,2}^E(\mathbf{x}) &= |\mathbf{a}^e \times \mathbf{x}|^2 + 2(\mathbf{a}^e \cdot \mathbf{x}) \\ c_{e,3}^E(\mathbf{x}) &= |\mathbf{a}^e \times \mathbf{x}|^3 + 6|\mathbf{a}^e \times \mathbf{x}|(\mathbf{a}^e \cdot \mathbf{x}) \\ &\vdots \end{aligned}$$

Exponential Family

$$c_e^E(\mathbf{X}; \theta_i) = e^{\left(\frac{a_1^e + |\mathbf{a}^e| \cos \theta_i}{2\kappa}\right)(x - x_{r,i})} e^{\left(\frac{a_2^e + |\mathbf{a}^e| \sin \theta_i}{2\kappa}\right)(y - y_{r,i})}$$

"Higher Order" Enrichment

$$c^{E}(\mathbf{x}) = \int_{0}^{\mathbf{v}_{i} \cdot \mathbf{x}} \exp \left\{ \frac{\sigma_{i} w^{2}}{2} + (\mathbf{v}_{i} \cdot \mathbf{b}) w \right\} dw$$

Element Nomenclature

Notation

DGM Element: $\begin{cases} Q - (n^{\text{pol}}, n^{\text{exp}}) - n^{\lambda} \\ Q - (n^{\text{pol}}, n^{\text{exp}})^* - n^{\lambda} \end{cases}$

DEM Element: $Q - n^{\exp} - n^{\lambda +} \equiv [Q - n^{\exp} - n^{\lambda}] \cup [Q_1]$

'Q': Quadrilateral

 $n^{\text{exp}}/n^{\text{pol}}$: Number of Exponential/Polynomial Enrichment Functions

 n^{λ} : Number of Lagrange Multipliers per Edge Q₁: Galerkin Bilinear Quadrilateral Element

nE Name Q - (4,5) - 2 $\phi_e + \left\{ \frac{2m\pi}{5} : m = 0, ..., 4 \right\}$ $Q - (4,5)^* - 2$ $\phi_e + \left\{ \frac{2m\pi}{\epsilon} : m = 0, ..., 4 \right\}$ DGM elements Q - (4, 9) - 313 $\phi_e + \{\frac{2m\pi}{9} : m = 0, ..., 8\}$ $Q-(4,9)^*-3$ 14 $\phi_e + \left\{ \frac{2m\pi}{9} : m = 0, ..., 8 \right\}$ $Q - 5 - 1^{+}$ $\phi_e + \left\{ \frac{2m\pi}{5} : m = 0, ..., 4 \right\}$ 9 $\phi_e + \left\{ \frac{2\tilde{m}\pi}{9} : m = 0, ..., 8 \right\}$ $Q - 9 - 2^{+}$ DEM elements $Q - 13 - 3^+$ $Q - 17 - 4^+$

Computational Complexities

Element	Asymptotic # of dofs	Stencil width for uniform $n \times n$ mesh	(# dofs) × (stencil width)	L ² convergence rate (a posteriori)
Q_1	n _{el}	9	9n _{el}	2
Q_2	3n _{el}	21	63 <i>n_{el}</i>	3
Q-(4,5)-2	4n _{el}	14	56 <i>n</i> _{el}	3
$Q-(4,5)^*-2$	4n _{el}	14	56 <i>n</i> el	3
$Q - 5 - 1^+$	3n _{el}	21	63 <i>n</i> el	2 - 3
Q_3	5n _{el}	33	165 <i>n_{el}</i>	4
Q-(4,9)-3	6n _{el}	21	126 <i>n_{el}</i>	4
$Q-(4,9)^*-3$	6n _{el}	21	126 <i>n_{el}</i>	4
$Q - 9 - 2^{+}$	5n _{el}	33	165 <i>n_{el}</i>	3 - 4
Q_4	7n _{el}	45	315 <i>n_{el}</i>	5
$Q - 13 - 3^+$ $Q - 17 - 4^+$	7n _{el}	45	315 <i>n_{el}</i>	4 – 5
$Q - 17 - 4^+$	9n _{el}	57	513 <i>n_{el}</i>	4 – 5

Figure 4: Q₁ stencil

Summary of Computational Properties

"COMPARABLES"

A priori in computational cost:

- DGM with n LMs and Q_n
- DEM with n LMs and Q_{n+1}

A posteriori in convergence rate:

- DGM with n LMs and Q_n
- DEM with n LMs and Q_n/Q_{n+1}

- Exponential enrichments ⇒ integrations can be computed analytically.
- When **a** constant, $\mathcal{L}c^E = 0 \Rightarrow$ convert volume integrals to boundary integrals:

$$\begin{array}{ll} \textit{a}(\textit{v}^{\textit{E}},\textit{c}^{\textit{E}}) &= \int_{\tilde{\Omega}} (\kappa \nabla \textit{v}^{\textit{E}} \cdot \nabla \textit{c}^{\textit{E}} + \textit{a} \cdot \nabla \textit{c}^{\textit{E}} \textit{v}^{\textit{E}}) \, d\Omega \\ &= \int_{\tilde{\Gamma}} \nabla \textit{c}^{\textit{E}} \cdot \textit{n} \textit{v}^{\textit{E}} d \, \Gamma \end{array}$$

Figure 6: L-shaped domain and rotating velocity field (curved lines indicate streamlines)

- Homogeneous Dirichlet boundary conditions are prescribed on all six sides of *L*–shaped domain Ω .
- Source: f = 1.
- $\mathbf{a}^T(\mathbf{x}) = (1 y, x)$.
- Outflow boundary layer along the line y=1.
- Second boundary layer that terminates in the vicinity of the re-entrant corner (x, y) = (0.5, 0.5).

Solutions Plots for $Pe = 10^3$ with ≈ 3000 dofs

[&]quot;Stabilized Q_1 " is upwind stabilized bilinear finite element [5].

Element	Rate of convergence	# dofs to achieve 10 ⁻² error
Q_2	1.94	62,721
$Q - 5 - 1^+$	1.55	21,834
Q_3	2.67	33, 707
$Q - 9 - 2^+$	2.37	7, 568
Q_4	3.50	20, 796
$Q - 13 - 3^+$	3.23	5, 935
$Q - 17 - 4^+$	3.26	4,802

- "Stabilized Q₁" is upwind stabilized bilinear finite element [5].
- To achieve for this problem the relative error of 1% for $Pe = 10^3$:
 - $Q-5-1^+$ requires $2.9 \times$ **fewer** dofs than Q_2 (same **sparsity**).
 - $Q 9 2^+$ requires $4.5 \times$ **fewer** dofs than Q_3 (same **sparsity**).
 - $Q 13 3^+$ requires $3.5 \times$ **fewer** dofs than Q_4 (same **sparsity**).

Convergence Analysis & Results

Element	Rate of convergence	# dofs to achieve 10 ⁻² error
Q_2	1.94	62, 721
$Q - 5 - 1^+$	1.55	21,834
Q_3	2.67	33, 707
$Q - 9 - 2^+$	2.37	7, 568
Q_4	3.50	20,796
$Q - 13 - 3^+$	3.23	5, 935
$Q - 17 - 4^+$	3.26	4, 802

finite element [5].

"Stabilized Q_1 " is upwind stabilized bilinear

- To achieve for this problem the relative error of 1% for $Pe = 10^3$:
 - $Q-5-1^+$ requires $2.9 \times$ **fewer** dofs than Q_2 (same **sparsity**).

$$\Rightarrow$$
 3.6 \times *less CPU time.*

• $Q - 9 - 2^+$ requires $4.5 \times$ **fewer** dofs than Q_3 (same **sparsity**).

$$\Rightarrow$$
 9.2 \times *less CPU time.*

• $Q - 13 - 3^+$ requires $3.5 \times$ **fewer** dofs than Q_4 (same **sparsity**).

Lid-Driven Cavity Flow Problem

- $\Omega = (0,1) \times (0,1), f = 0.$
- a(x) computed numerically by solving the incompressible Navier-Stokes equations for lid-driven cavity flow problem (stationary sides and bottom, tangential movement of top).
- Advection field reconstructed using interpolation with bilinear shape functions ϕ_i^e :

$$\mathbf{a}^e(oldsymbol{\xi}) = \sum_{i=1}^{\# ext{ nodes of } \Omega^e} \mathbf{a}^e_i \phi^e_i(oldsymbol{\xi})$$

 c(x) represents temperature in cavity.

Convergence Analysis & Results ($\kappa = 0.01$, $Pe \approx 260$)

Pure DGM elements without "higher order" enrichment outperform Galerkin comparables.

Galerkin Element: Q., x = 0.005

- Pure DGM elements without "higher order" enrichment outperform Galerkin comparables.
- Further improvement in computation by adding "higher order" enrichment.

Galerkin Element: Q., x = 0.005

$$Q - (4,5) - 2$$

Summary

Discontinuous Enrichment Method (DEM) = efficient, competitive alternative to stabilized FEMs for advection-diffusion in a high Péclet regime.

- Parametrization of exponential basis enables systematic design of DEM elements of arbitrary orders.
- Augmentation of enrichment space with additional free-space solutions can improve further the approximation.
- For all test problems, enriched elements outperform their Galerkin and stabilized Galerkin counterparts of comparable computational complexity, sometimes by many orders of magnitude.
- In a high Péclet regime, DGM and DEM solutions are almost completely oscillation-free, in contrast with the Galerkin solutions.
- Advection-diffusion work generalizable to more complex equations in fluid mechanics (e.g., non-linear, unsteady, 3D).
- Future work: DEM for incompressible Navier-Stokes.

References

$(www.stanford.edu/\sim$ irinak/pubs.html)

- [1] C. Farhat, I. Harari, L.P. Franca, The Discontinuous Enrichment Method, *Comput. Methods Appl. Mech. Eng.* **190** (2001) 6455-6479.
- [2] I. Kalashnikova, R. Tezaur, C. Farhat. A Discontinuous Enrichment Method for Variable Coefficient Advection-Diffusion at High Péclet Number. *Int. J. Numer. Meth. Engng.* (in press)
- [3] C. Farhat, **I. Kalashnikova**, R. Tezaur. A Higher-Order Discontinuous Enrichment Method for the Solution of High Péclet Advection-Diffusion Problems on Unstructured Meshes. *Int. J. Numer. Meth. Engng.* **81** (2010) 604–636.
- [4] I. Kalashnikova, C. Farhat, R. Tezaur. A Discontinuous Enrichment Method for the Solution of Advection-Diffusion Problems in High Péclet Number Regimes. *Fin. El. Anal. Des.* **45** (2009) 238–250.
- [5] I. Harari, L. P. Franca, S. P. Oliveira. Streamline Design of Stability Parameters for Advection-Diffusion Problems. *J. Comput. Phys.* 171 (2001) 115–131.